

AR0234CS-GMSL2-STEREO-R35.5.0-AGX-ORIN_20240329_Driver_Guide

* Copyright (c) 2024, Leopard Imaging Inc. All Rights Reserved. Overview

This driver is designed for LI-AR0234CS-GMSL-STEREO (Hawk) camera kit with Nvidia Jetson AGX Orin Developer kit.

This driver supports up to two LI-AR0234CS-GMSL2-STEREO cameras.

This driver supports 1920x1200@60fps.

This driver is based on R35.5.0 (Jetpack 5.1.3)

Download link	
https://www.dropbox.com/scl/fo/f7nldto73p7122	v6d479x/h?rlkey=7rlge60ia85xlk5183pt7yjhy&dl=0
Platform	Camera
Nvidia Jetson AGX Orin Developer kit	1 ~ 2 x LI-AR0234CS-GMSL2-STEREO
	camera(s)
Cable	Adapter/Carrier Board
1 x 4-in-1 Fakra cable	1x E3653-A03
(PN: LI-FCB-4T1-SS-2M-NP-T1)	1 x LI-JTX1-SUB-ADPT
(PN: LI-FCB-411-SS-2M-NP-11)	I X LI-JIXI-SUB-ADPI

Revision		SVN version	Release Date	Author	Tested by	
2024_03_29			03/29/2023	Xixian Xing		
Updates						
Revision			Description			Release Date
2023_10_19 First Release based on R35.4.1 10/19/2023				10/19/2023		
2024_03_29 Update the driver to R35.5.0 03/29/2024			03/29/2024			
Known bugs						

Setup Procedure 1/2

Hardware:

- 1. Nvidia Jetson AGX Orin Developer Kit x 1
- 2. E3653-A03 x 1
- 3. LI-JTX1-SUB-ADPT x 1
- 4. LI-AR0234CS-GMSL2-STEREO x $1 \sim 2$
- 5. 4-in-1 Fakra cable x 1 (LI-FCB-4T1-SS-2M-NP-T1 cable is included in E3653-A03 adapter order)
- 6. USB 3.0 Type-C cable x 1 (for flashing OS image)
- 7. Monitor with HDMI cable x 1
- 8. Keyboard and Mouse (with USB hub) x 1

Note: You don't have to connect all two cameras. One camera (on port1) works too.

Driver installation:

1. Download the R35.5.0 OS Image (from link below) to your Ubuntu OS on Intel x64 Host PC (we are using Ubuntu 20.04/18.04; virtual machine is fine) and follow the l4t_quick_start_guide to install the Jetpack to Orin.

R35.5.0 OS Image:

https://www.dropbox.com/scl/fo/xjf55q5twhc3bag494qti/h?rlkey=styaguzbmt9g45byuoq9vflau&dl=0

2. Use the sudo command to copy the tegra234-p3701-0000-p3737-0000.dtb to the /boot/dtb/kernel_tegra234-p3701-0000-p3737-0000.dtb in your Orin platform, and use the sudo command again to copy the tegra194-p2888-0001-p2822-0000.dtb to the boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb such as the following: sudo cp tegra234-p3701-0000-p3737-0000.dtb /boot/dtb/kernel_tegra234-p3701-0000-p3737-0000.dtb sudo cp tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb sudo cp tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb sudo cp tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb sudo cp tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb sudo cp tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb /boot/dtb/kernel_tegra194-p2888-0001-p2822-0000.dtb

Note: If the AGX Orin Devkit is 64GB version, please use below two commands to install driver.

 $sudo \ cp \ tegra 234 - p3701 - 0000 - p3737 - 0000. dtb \ /boot/dtb / kernel \ tegra 234 - p3701 - 000 \ 5 - p3737 - 0000. dtb \ sudo \ cp \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000. dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ tegra 194 - p2888 - 0001 - p2822 - 0000 \ dtb \ /boot/dtb / kernel \ dtb \ /boot/dtb / kernel \ dtb \ /boot/dtb / kernel \ dtb \$

3. Open a terminal and then use the commands below to remove the existing *. ko files (max96712.ko and nv_ar0234.ko) from the "/lib/modules/5.10.120-tegra/kernel/drivers/media/i2c/" directory first.

sudo rm /lib/modules/5.10.192-tegra/kernel/drivers/media/i2c/max96712.ko sudo rm /lib/modules/5.10.192-tegra/kernel/drivers/media/i2c/nv_ar0234.ko sudo rm /lib/modules/5.10.192-tegra/kernel/drivers/iio/imu/bmi088/bmi088.ko

4. Reboot AGX Orin, and then open a terminal and then perform the below commands. sudo insmod max96712.ko sudo insmod nv_ar0234.ko sudo insmod bmi088.ko

Note:

 The max96712.ko, nv-ar0234.ko, & bmi088.ko files are included in downloaded Driver's "Binaries" folder.
 If you restart the Orin system, you must repeat these 3 commands again before using Argus Software, Gstreamer, or other camera capture applications to stream video images.

Setup Procedure 2/2
5. Then execute the command below to get live video images output. nvgstcapture-1.0 Note: Make sure the first camera is connected to Port 1, then the second camera connected to Port 2, and so on.
 6. Use Ctrl+C to close the video and then copy "camera_overrides.isp" from you downloaded driver's "Binaries" directory to /var/nvidia/nvcam/settings directory and then use root (sudo) commands to change the file permission and its ownership such as the following: sudo cp camera_overrides.isp /var/nvidia/nvcam/settings/ sudo chmod 664 /var/nvidia/nvcam/settings/camera_overrides.isp sudo chown root:root /var/nvidia/nvcam/settings/camera_overrides.isp
nvidia@nvidia-desktop:~/Downloads\$ sudo cp camera_overrides.isp /var/nvidia/nvca m/settings/ nvidia@nvidia-desktop:~/Downloads\$ sudo chmod 664 /var/nvidia/nvcam/settings/cam era_overrides.isp nvidia@nvidia-desktop:~/Downloads\$ sudo chown root:root /var/nvidia/nvcam/settin gs/camera_overrides.isp nvidia@nvidia-desktop:~/Downloads\$
7. Try "nvgstcapture-1.0" again. You should be able to see the image with better image quality nvgstcapture-1.0

Run Camera

1. Argus software

Download the Multimedia package from the Dropbox link below and then copy it to the Orin system. https://www.dropbox.com/scl/fi/51kjxlwtiqbxtto8vjgpb/Jetson_Multimedia_API_R35.5.0_aarch64.tbz2?rlkey=xb511wv7d32rfjdbnw75qz2o3&dl=0

Open a terminal, do sudo apt-get update sudo apt-get install cmake build-essential pkg-config libx11-dev libgtk-3-dev libexpat1-dev libjpeg-dev libgstreamer1.0-dev

Uncompress the downloaded zip file and then untar the file. tar xpf Jetson Multimedia API R35.5.0 aarch64.tbz2

Under usr/src/jetson_multimedia_api/argus/cmake (cd usr/src/jetson_multimedia_api/argus/cmake), do the following: cmake ..

make sudo make install Do "argus camera --device=0"

2. Gstreamer

gst-launch-1.0 nvarguscamerasrc sensor-id=0 ! 'video/x-raw(memory:NVMM), width=(int)1920, height=(int)1200, framerate=30/1' ! nvvidconv flip-method=0 ! 'video/x-raw, format=(string)I420' ! xvimagesink -e

3. v4l2-ctl capture raw

v4l2-ctl -V --set-fmt-video=width=1920,height=1200,pixelformat=RG10 --set-ctrl bypass_mode=0 --stream-mmap --stream-count=1 --stream-to=ar0234cs.raw -d /dev/video0

Important Note:

 The 0 can be changed to 1 ~ 3 to use other lens or/and cameras. Video #0 is the left lens of the first Hawk camera. Video #1 is the right lens of the first Hawk camera. Video #2 is the left lens of the second Hawk camera. Video #3 is the right lens of the second Hawk Camera.

 Please use the below commands to install v4l2 if it has not been installed to the Orin system before. sudo apt-get update sudo apt-get install v4l-utils

 If you rebooted Orin platform, you must re-issue the following commands in the .ko file directory: sudo insmod max96712.ko sudo insmod nv_ar0234.ko sudo insmod bmi088.ko

Note 1/2

1. Note: If you would like to install Jetpack 5.1.3 but don't want to re-flash the whole OS image, you can uncheck the Jetson OS and install the Jetson SDK components only.

STEP 01	JETPACK 4.3 LINUX FOR JETSON NANO		Expand all
DEVELOPMENT	✓ HOST COMPONENTS	DOWNLOAD SIZE	STATUS
	> CUDA	1,886 MB	
	> Computer Vision	148.0 MB	
STEP 02	> Developer Tools	407.8 MB	
DETAILS AND LICENSE		DOWNLOAD SIZE	STATUS
	✓ □ Jetson 05		
STED 03	JetSon OS image		
	> Flash Jetson OS		
	✓ ✓ Jetson SDK Components	957.0 MD	
		992.6 MB	
	Computer Vision	140.0 MB	
	NVIDIA Container Runtime	1.1 MB	
	Download folder- /home/simon/Downloads/nvidia/adkm_downloads	change [5GB required]	
	Tarnet HW image folder: /home/simon/nvidia/nvidia edk	change (0GB required)	
	I accept the terms and conditions of the <u>license agreements.</u>	Download now. Install later.	C BACK TO STEP OF

N + 2/2
Note 2/2
2. Compile the driver
If you would like to recompile the driver, please follow the below steps.
Download the driver code and Tool chain from Dropbox links below.
Kernel Code: <u>https://www.dropbox.com/scl/fi/223jc02ed1b59v110oc1d/kernel_srcR35.5.0.tbz2?rlkey=irw6p2qpuhaf19rra79xcpw29&dl=0</u>
GCC ToolChain: <u>https://www.dropbox.com/s/co7inyf8wbt8nlh/aarch64glibcstable-final.tar.gz?dl=0</u>
Compile the kernel under 64-bit Ubuntu OS on Intel x64 PC. (Virtual machine is fine. We are using
Ubuntu 20.04/18.04)
1) Copy compile tool "aarch64glibcstable-final.tar.gz" to "/opt", and then unzip it there:
sudo tar xpf arrch64glibcstable-final.tar.gz
2) Copy "kernel src R35.5.0.tbz2" and the two patch files (do not use sudo command to copy here)
to a newly created directory called "project" under "~/Downloads" (for example: cd ~/Downloads.
mkdir project, cd project) and then do the following
tar xyfn kernel src. R35 5.0 thz?
sudo chown -R $\leq user$ name> kernel
sudo chown -R <user_name> hardware</user_name>
Note: <user_name> is the user name of your Ubuntu OS</user_name>
For example: sude chown, P leonard kernel
For example, sudo chown -K leopard Kerner
2) Apply the software notabilities as shown below.
5) Apply the software patch lines as shown below: $1 \leq 1 \leq 1 \leq 1 \leq 20244$, had been lower $0(712, 25, 4.1)$. Notice $0 \leq 20240220$, the note b
patch $-p_1 < ar_{0234}$ dual nawk gmsi2 max96/12_55.4.1 X avier Orin 20240329 dtos.patch
patch -p1 < ar0234_dual_hawk_gms12_max96/12_35.4.1_Xavier_Orin_20240329_kernel.patch
4) To install the tool in the kernel src thz? file extracted directory execute below commands:
4) To instan the tool in the kerner_ste.tozz the extracted directory, execute below commands.
sudo apt-get install lice
sudo api-get install oison
sudo apt-get install openssi
sudo apt-get install libssl-dev
5) To conveile in the bound, are her? file entropy of dimensions and encounter the following common dev
5) To compile in the kernel_src.bl22 file extracted directory and execute the following commands:
export CROSS_COMPILE_AARCH64_PATH=/opt/bin/aarch64-buildroot-linux-gnu-
export CROSS_COMPILE_AARCH64_PATH=/opt
./nvbuild.sh -o \$PWD/kernel_out/
Note: /opt / is the installation path where the compiler is decompressed.
b) to check the important compiled result files for this camera driver:
Note: Assumed the previous kernel_src.tbz2 extracted and recompiled under "~/Downloads/project".
Finally, you can get the following files at the following paths from the "~/Downloads/project":
1) tegra234-p3701-0000-p3737-0000.dtb under
~/Downloads/project/kernel_out/arch/arm64/boot/dts/nvidia/tegra234-p3701-0000-p3737-0000.dtb
2) tegra194-p2888-0001-p2822-0000.dtb under
~/Downloads/project/kernel_out/arch/arm64/boot/dts/nvidia/tegra194-p2888-0001-p2822-0000.dtb
3) max96712.ko under ~/Downloads/project/kernel_out/drivers/media/i2c/max96712.ko
4) nv_ar0234.ko under ~/Downloads/project/kernel_out/drivers/media/i2c/nv_ar0234.ko
5) bmi088.ko under ~/Downloads/project/kernel_out/drivers/media/i2c/bmi088.ko

IMU support

```
1. How to access imu data in driver
   Note: Enter root password mode (sudo su -) before issuing the following Linux commands.
Acc:
   cd /sys/devices/platform/3180000.i2c/i2c-2/i2c-30/30-0069/iio:device0
   cd scan elements
   echo 1 > in accel x en
   echo 1 > in accel y en
   echo 1 > in accel z en
   echo 1 > in timestamp en
   cd ../buffer
   echo 1 > enable
   cd ..
    cat in accel x raw
    cat in accel y raw
    cat in accel y raw
geo :
   cd /sys/devices/platform/3180000.i2c/i2c-2/i2c-30/30-0069/iio:device1
   cd scan elements
   echo 1 >in_anglvel_x_en
   echo 1 >in anglvel y en
   echo 1 > in anglvel z en
   echo 1 > in timestamp en
   cd ../buffer
   echo 1 > enable
   cd ..
   cat in anglvel x raw
   cat in anglvel y raw
   cat in anglvel y raw
```


AR0234CS-GMSL2-STEREO-R35.5.0-AGX-ORIN_20240329_Driver_Guide

Figure 1: IMU used pins in jetson AGX Orin's pinout header is shown in this picture.

Figure 2: IMU used pins in E3653-A03 adapter board's J13 header is shown in this picture.

AR0234CS-GMSL2-STEREO-R35.5.0-AGX-ORIN_20240329_Driver_Guide

Figure 3: This picture shows the physical IMU test wire connections on the Jetson AGX Orin system with E3653-A03 adapter board.

The detailed explanation for wire 1, 2, 3, 4 connections are described in the following image (Figure 4).

Connect wires from E3653 header to the 40 pin header on Jetson AGX Orin system as the following:

Wire_4: From Pin 3 (MFP4_ACC1_INT1_LS) from J13 header of E2653-A3 to pin 37 (CAN1_DIN) of Orin's 40-pin header Wire_3: From Pin 6 (MFP5_ACC2_INT1_LS) from J13 header of E2653-A3 to pin 33 (CAN1_DOUT) of Orin's 40-pin header Wire_2: From Pin 4 (MFP6_GRY02_INT3_LS) from J13 header of E2653-A3 to pin 31 (CAN0_DOUT) of Orin's 40-pin header Wire_1: From Pin 5 (MFP10_GRY01_INT3_LS) from J13 header of E2653-A3 to pin 29 (CAN0_DIN) of Orin's 40-pin header

Note:

(A) Details about J13 header of E3653-A3 adapter on Orin system:

```
J13 header from E3653-A3 adapter with 4x1 cable connector on the left.
Pinouts of E2653-A3 with the top view and 4x1 cable on the left side direction:
         2,1
(Wire_2) 4 , 3 (Wire_4)
(Wire_3) 6 , 5 (Wire_1)
        7,7
         10, 9
Note: Pin 1 of E3653-A3 is VCC 3.3 V
      Pin 9 of E3653-A3 is GND.
Required connections:
     Pin 3 of E3653-A3 is MFP4 ACC1 INT1 LS
      Pin 5 of E3653-A3 is MFP10_GRY01_INT3_LS
      Pin 4 of E3653-A3 is MFP6_GRY02_INT3_LS
      PIN 6 of E3653-A3 is MFP5_ACC2_INT1_LS
(B) Details about 40 pin header on Orin:
The 40-pin header for Jetson AGX Orin system can be found from the following web link:
https://developer.nvidia.com/embedded/learn/jetson-agx-orin-devkit-user-guide/developer_kit_layout.html
From 40 pin header on Orin: Viewing from two USB connector on lef side and one USB connector on right side of this header
2,4,6,8,10,12,14,16,18,20,22,24,26,28,30,32,34,36,38,40
1,3,5,7, 9,11,13,15,17,19,21,23,25,27,29,31,33,35,37,39
Note: Pin 1 of Orin's 40 pin header is 3.3 V
     Pin 39 of Orin's is GND.
Required connections:
      Pin 37 of Orin's 40 pin is CAN1_DIN
      Pin 33 of Orin's 40 pin is CAN1_DOUT
      Pin 31 of Orin's 40 pin is CAN0_DOUT
      PIN 29 of Orin's 40 pin is CAN0_DIN
```

Figure 4: Above picture shows the details of the wire connections for IMU test on Jetson AGX Orin system with E3653-A03 adapter board,

3D Depth Support

The two LI-AR0234CS-STEREO-GMSL2-30 camera can also stream mono color 3-D Depth images as in using the "vpi_demo_stereo" application.

Note 1:

Make sure the following commands are issued before in Orin system without power cycle.

sudo insmod max96712.ko sudo insmod nv_ar0234.ko sudo insmod bmi088.ko

Note 2:

We assumed that you already installed "HOST COMPONETS" that contains the "Computer Vision" (VPI components) from Note ¹/₂ section of this driver.

First install the "vpi_demo" samples using the following Linux commands:

cd /opt/nvidia/vpi2/bin ./run_demo.sh ./vpi_install_samples.sh ~/Downloads/

Note: If there is any pop-up dialog window that shows additional installation files are needed, please write them down on a piece paper and then install them as guided.

Next, from the :/opt/nvidia/vpi2/bin" directory in Orin system, issue the following Linux command to launch Nvidia's vpi_demo_stereo application window.

cd /opt/nvidia/vpi2/bin ./vpi_demo_stereo

Finally, select the menu option "File" -> "Open" and choose "HAWK1" and then "HAWK2" to display the 3D depth images that are captured from the two LI-AR0234CS-STEREO-GMSL2-30 cameras as shown in figure 5 and 6.

AR0234CS-GMSL2-STEREO-R35.5.0-AGX-ORIN 20240329 Driver Guide

File View Window	About
Input: Rectified	Backend: CUDA Output: Stereo Disparity
	Open Video Source 🛛 😣
	Camera Video file Device: HAWK1 HAWK2 vi-output, ar0234 30-0018 Resolut vi-output, ar0234 30-0010 Frame r vi-output, ar0234 31-0018 vi-output, ar0234 31-0018
	Calibration:Cancel Open <
Status	pipeElapsed pipeFP

Figure 5: The "vpi_demo_stereo" application window's selections for using two HAWK1 and HAWK2 cameras to stream 3D depth images from two LI-AR0234CS-STEREO-GMSL2-30 cameras.

Figure 6: Mono color 3D depth images displayed from two Hawk cameras (LI-AR0234CS-STEREO-GMSL2-30) using the "vpi_demo_stereo" application.